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Abstract –  
Concrete 3D Printing (3DP) has the potential to 
reduce construction time and the usage of labor and 
material in the construction industry. However, many 
parameters are found to influence the output of 3DP, 
and consequently, the variations in the quality of 
output are high. To fully realize the advantages of 
3DP and to develop it into a technology for large-scale 
construction, a focus on quality monitoring and 
control is required. The workability of concrete is 
found to reduce with time, impacting the 
extrudability and buildability properties. This can be 
seen in 3DP elements, where the bottom layers are 
found to have a smooth textural finish while the top 
layers have cracks, voids, and defects. To quantify the 
extrudability changes in the concrete, a new 
computer-vision-based methodology is proposed in 
this paper using a modified Histogram of Oriented 
Gradients (HOG) texture extraction method. 
Different levels of texture variations are extracted to 
quantify both minor and major textural changes. 
Weighted texture and normalized weighted texture 
metrics are introduced to have a combined single 
measure for minor and major textural variations. 
Further, a temporal textural change study is proposed 
to indirectly assess the buildability properties of 
concrete 3DP. This paper contributes to developing a 
non-intrusive autonomous quality monitoring and 
assessment technique for concrete 3D printed 
elements.  
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1 Introduction and background 
Concrete 3D printing (3DP) is an emerging free-

form-based digital construction technology that has the 
potential to improve automation in the construction 
industry. 3DP increases productivity by reducing 
construction time while also reducing material and labor 
usage. Though there are many advantages, employing the 

technology on a larger scale requires maturity in terms of 
repeatability and quality control [1]. But the number of 
studies on quality control in concrete 3DP is limited, and 
many industry experts consider it a critical topic [2].  

Since concrete 3DP depends on many input 
parameters, the quality of printed extrudates varies 
drastically [3]. Effective quality control systems help to 
avoid re-work and material wastage. The output quality 
of the concrete 3DP elements varies with the reduction in 
the material’s workability and moisture content. The 
bottom layers are seen to have a smooth surface texture 
finish, and the top layers have a more granular finish, 
ultimately leading to voids/discontinuities. The changes 
in workability are found to affect the extrudability and 
buildability properties of concrete [4]. Extrudability is 
the ability of the concrete to pass with a high shear 
through a nozzle and maintain the liquid properties. 
Buildability is the ability of concrete to maintain its shape 
without much deformation under the influence of the 
weights of successive layers. There have been studies 
that use mechanical tests to quantify workability over 
time [5], but they cannot be used for real-time monitoring 
[6].  

Computer vision (CV) has gained significant 
importance in additive manufacturing[7] and slowly 
getting traction in concrete 3DP [8][9]. Hence there are 
very few studies in concrete 3DP using CV for quality 
assessment and using it for real-time feedback to control 
the quality of 3D printing.  

This study proposes the use of images and videos of 
3D printed elements to evaluate the surface textural 
variations. CV-based texture extraction helps to obtain 
surface textural variations within each printed layer 
image to detect defects like voids and discontinuities. It 
is a continuation of the previous work [6], which utilized 
a different two-bin Local Binary Pattern (LBP) algorithm 
that only captured texture variation in the horizontal 
direction. A novel approach to capture texture in three 
directions with a method to categorize minor and major 
textural variations is developed in this study to assess the 
quality of the printed layers. Also, a temporal textural 
variation study is introduced to assess the buildability 
properties.  
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1.1 Objective 
The main objective of this study is to develop a non-

intrusive autonomous quality monitoring and assessment 
methodology using a CV-based texture extraction 
method.  

1.2 Methodology 
An overview of the methodology is shown in Figure 

1. It involves collecting images or videos of 3D-printed
layers during the printing process. Pre-processing is done
to crop the individual layers into separate images, which
are used in textural analysis to extract the variations
within each layer. A novel method is proposed to capture
both minor and major textural variations.

Figure 1 - Methodology of quality assessment 
using computer vision 

A single metric is developed to capture all the minor 
and major textural variations. And a threshold for the 
metric is identified for assessing the quality of the printed 
layers.    

2 Materials and Methods 

2.1 Materials used 
For this study, sample 3D printed elements were 

printed with a recently developed Limestone Calcined 
Clay (LC2) mix composed of OPC cement and 
Limestone Calcined Clay as the binder materials [10]. 
The aggregate used was 4.75mm size Manufactured Sand. 
Super-plasticizers and powder-based Viscosity 
Modifying Admixtures (VMA) were used to achieve 
optimum rheological properties of the mix to print.  

A gantry-based robotic printer is used in this study. 
For evaluating the newly developed methodology, two 
specimens were used. One circular cross-section element 
was printed for a height of 1000 mm. Another circular 
3D-printed element of height 700 mm was printed with a 
chemical-based super-plasticizer. Since it was a 
chemical-based super-plasticizer, there were many voids, 
and the printing was stopped at 700 mm as it may lead to 
the clogging of pipes. 

2.2 Image Data Collection and Pre-processing 
Since the current study is focused on extracting the 

texture variations in all the layers, image/video data is 
collected by keeping a camera perpendicular to the 
printed element. The camera is positioned 1.5 m 
horizontally from the printed elements, such that all the 
side layers are visible in a single shot of the 3D-printed 
element. Since a single picture containing all the layers 
was used for the analysis, the influence of differential 
illumination on different images is avoided.  

Figure 2 - Printed element A (left), bottom section 
of Element A taken for analysis - Section A1 
(middle), Top section of Element B taken for 
analysis - Section A2 (right) 

Figure 3 - Printed Element B (left), Section 
considered for analysis and the layer designations 
of Element B (right) 

The camera used in the study is a Canon EOS 1300D 
DSLR camera with an 18 MP resolution. Since the 
printed elements are of circular cross-sections, 
images/videos taken from the sides will have the impact 
of curvature. The central one-third of the image is used 
in this study to avoid the curvature effects on the analysis. 

The individual layers of the printed element are 
cropped to create the input images for analysis. The 
individual layer elements are designated as L1 for the 
bottom layer and numbered sequentially for the top layers. 
The two printed elements-Element A and B, and their 
layer designations are given in Figure 2 and Figure 3, 



respectively. The cropping of individual layers was done 
manually in this study, but it can be automated using 
computer vision techniques like image segmentation.  It 
is a part of ongoing research and is proposed as a part of 
future work.   

2.3 Texture extraction – Histogram of 
Oriented Gradients (HOG) 

The layer images were analyzed using a texture 
extraction algorithm written in Python language. 
Multiple texture extraction algorithms were evaluated for 
their capability to identify quality defects in 3DP 
concrete specimens. A custom-designed version of the 
Histogram of Oriented Gradients (HOG) approach was 
found to give the best results.  

The Histogram of Oriented Gradients (HOG) was 
first conceptualized in 1986. It is a popular feature 
extractor that can extract useful information from the 
given image and eliminate unwanted information. HOG 
uses the gradients of pixel values in the images [11]. The 
gradient measures the pixel intensity variation in a 
particular direction. The gradient can be computed in one 
or many directions.   

In this study, a new version of the HOG feature 
extractor is designed to extract gradients in three different 
directions using masks, as shown in Figure 4, namely, 
Horizontal, Vertical, and Diagonal masks. The masks 
were designed based on Robert’s filter to detect the edges 
in images. Application of each mask at a pixel position 
involves taking an inner product of the matrix with the 
corresponding pixel values in the neighborhood of the 
pixel position.  

Figure 4 - Gradient masks used for texture 
extraction 

These masks are convoluted across the input images; 
the inner product is calculated at each pixel position. To 
consider both minor and major texture variations, a range 
of thresholds is used to calculate the number of pixels that 
have large gradients. A window size of 4 image pixels 
(2x2) is chosen for the study.  

The individual pixel windows are convoluted with the 
horizontal, vertical, and diagonal masks to get the output 
gradients. The output of the HOG operator is taken as the 
number of pixels having gradient changes in any one of 
the directions after converting the images into grayscale. 

The HOG algorithm developed in this work is 
different from the conventional HOG algorithm in the 
following aspects: the histogram is computed using the 
count of pixels having gradient greater than different 

threshold values; that is, it computes the gradient in 
horizontal, vertical, and inclined directions and counts 
the number of pixels where the gradient exceeds the 
threshold.  

Since the count of the HOG gradient variations gives 
the textural variations within the printed element, the 
output of the HOG operator shall be called as texture in 
this study.  

2.4 Weighted mean calculation 
From the HOG analysis, different outputs are 

obtained for a single-layer image for different threshold 
values. The smaller threshold outputs will capture all the 
minor gradient changes, and the larger threshold captures 
only the major textural variations like voids and 
discontinuities.  

The voids/discontinuities in the printed layers 
contribute to the major textural changes. Hence 
maximum weightage is given for large threshold values; 
that is, the threshold of 128 is given the maximum 
weightage and the threshold of 4 the minimum. Then the 
weighted mean is computed for each of the “i” threshold 
values, as per the following equation, 

Weighted mean of the image = ∑(wi * xi) / ∑(wi) 
Where, wi – the weight given for the threshold value 

“i”, xi – HOG output of the image for the threshold value 
“i”. The weighted mean is computed for each of the 
individual layer images and then tabulated. The weighted 
mean gives the weighted values of the textural pattern 
seen in the individual printed layer image, which shall be 
designated as weighted texture in this study. 

2.5 Normalized weighted mean calculation 
Though the weighted mean gives a fair representation 

of the textural variations within the printed elements, the 
impact of brightness/illumination changes will influence 
the output. To eliminate the variabilities due to 
illumination, the mean and standard deviation of 
weighted mean values are computed for all the layers in 
the different printed elements separately. Then, each of 
the weighted HOG mean outputs of individual layer “i” 
of the printed element “j” is normalized using the 
following formula,  

Normalized weighted mean for each layer image = 
(xi,j - µj) / σj

xi,j – HOG weighted mean of the individual layer “i” 
of printed element “j”, µj – Mean value of all the 
individual layer’s HOG weighted mean values of printed 
element “j”, σj – Standard deviation value of all the 
individual layer’s HOG weighted mean values of printed 
element “j”. Normalized weighted mean values of the 
textural variation shall be identified as Normalized 
weighted texture in this study for ease of understanding.  

-1 0 -1 1 -1 0

1 0 0 0 0 1
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2.6 Entropy value calculation 
Another measure of textural variations generally used 

is information entropy by Shannon. It is used in this study, 
given by the formula, 

Entropy = -∑ Pi * log2 Pi
Where, Pi – Ratio of the number of HOG pixel 

outputs for a threshold value “i” to the total number of 
pixels found (textural variations) in all the threshold 
value outputs. Entropy represents the distribution of pixel 
brightness/intensities within a given image. It indirectly 
measures the changes within a layer, like thickness 
variations due to the buildability properties of 3DP 
concrete material. 

3 Results 

3.1 Surface textural variation within a printed 
element – texture extraction 

The individual layer images are processed using a 
CV-based HOG textural extraction algorithm for
different threshold values. The output will be the number
of pixels/points having textural variations beyond the
specified threshold. For example, the HOG textural
variation output of a few different threshold value outputs
for layer L19 of printed element B is shown in Figure 5.
Different positions/points in the image where textural
variations exist are marked as black pixels. The output
with a threshold value of 4 captures all the minor

variations in the printed layers, leading to a higher 
density of black pixels. It captures both the minor 
variations within the printed layer and the major 
variations at the layer edges. In contrast, for the 128-
threshold output, only the major textural variations that 
happen only at the layer edges and voids are captured. It 
is seen that the number of black pixels reduces and 
concentrates only on the layer edges as the threshold 
value increases. 

32 different values for each layer image 
corresponding to different threshold values are shown in 
Figure 6. The outputs are for the bottom ten layers of the 
3D-printed element B. From the results, it is evident that 
beyond the 128-threshold value, the output of the HOG 
algorithm is minimal. Hence the analysis was not done 
beyond the 128-threshold value.  

Figure 5 - HOG output for different threshold 
pixel values for individual layer - L19 of Element 
B 

Figure 6 - HOG outputs for different threshold values for Element B (first ten layers) 

3.1.1 Weighted mean variation – weighted texture 
calculation 

The weighted texture is taken as a single measure of 
texture variation representation. A weightage of 32 is 
given to the 128-threshold output and reduced by one for 
every 4-pixel point reduction in the threshold value. 
Since the primary focus of this study is to identify layers 
with defects/voids, higher weightage is given to major 
textural variation outputs (128 threshold), and lesser 
weightage is given to minor textural variation outputs (4 
threshold).  

The outputs of the weighted texture for Element A 
and B are plotted in Figure 7. The weighted texture values 
obtained for Element B are higher than Element A. It is 
due to the presence of more voids and discontinuities in 
the printed layers. It confirms that Element A is a 
relatively good quality print in comparison to Element B. 

3.1.2 Normalized weighted texture calculation 

Further, a normalized weighted mean is computed 
from the weighted texture to evaluate the print quality, as 
shown in Figure 8. The standard deviation and mean of 
all the individual layer’s HOG weighted texture output in 
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L5 2788 2039 1361 914 578 317 156 66 20 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L6 2884 2111 1541 1104 748 456 256 114 47 17 10 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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L8 2111 1492 987 623 424 257 122 51 18 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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each printed element are calculated, and each data point 
is normalized in terms of mean and standard deviation 
within its printed element. It eliminates the influence of 
illumination and brightness variation during the different 
times of printing Elements A and B. The normalized 
values will be easy to compare and evaluate the 
effectiveness of the print quality. Also, this step 
eliminates the subjectivity in selecting weights for the 
weighted texture calculation. Making the technique more 
robust in terms of evaluation.  

The results indicate that the normalized weighted 
texture values of Element B are generally higher than 
Element A. This means that the textural variations within 
the individual layers of Element B are higher than 
Element A. It indicates the presence of more granular 
texture and voids/defects in the individual layers. The 
evolution of normalized weighted texture for Elements A 
and B is explained in detail as follows, 

Element A: From Figure 8, the normalized weighted 
texture values of the bottom layers of Element A are less 
than zero. The variations of values are also low, which 
can be directly correlated to the smooth textural finish of 
the bottom printed layers found in Figure 2. Beyond L20, 
higher value spikes were found (beyond the value of zero) 
in the normalized weighted texture values that can be 
directly related to the voids present in the individual 
layers of Element A. Beyond L20, some layers are not 
found to have any voids, which can be identified by the 
lower values of the normalized weighted texture. 
However, other layers having voids are characterized by 
higher normalized weighted texture values making the 
variation of values erratic. It can be visually understood 
that higher value spikes are found for individual layer 
elements having voids/deformities. And beyond L20, the 
concrete has lost significant value of moisture content 
requiring external interference to get good quality prints.  

Figure 7 - Weighted texture output for the 
individual layer images of Element A and B 

Element B: In contrast to Element A, Element B's 
normalized weighted texture values started to vary 
drastically and reach higher values (more than zero) in 
the initial layers. It can be correlated with voids/defects 
present in the initial few layers of Element B, as shown 
in Figure 3. But in the other bottom layers, due to 
sufficient workability, a smooth texture can be found, 
which is indicated by lower values of normalized 
weighted texture until L20. But, beyond L20, the values 
are always higher than zero and increasing, indicating the 
granular texture and the presence of voids/defects in 
every layer. Higher spikes in normalized weighted 
texture values beyond the value zero match with the 
layers having voids/deformities.  

Further, the linear fit obtained on the normalized 
weighted texture values of elements A and B indicates a 
steep increase in the values for Element B compared to 
Element A. Hence, the slope of the linear fit of the 
normalized weighted texture values can also indicate the 
quality of the 3D printed elements.  

Figure 8 - Normalized weighted texture output of 
individual layer images of Element A and B 

3.2 Temporal textural variation of a single 
printed layer 

A temporal texture variations study is proposed to 
assess the buildability properties using surface texture 
analysis. To achieve this, temporal textural variation for 
a single layer of a printed element is extracted at different 
instances of printing to understand the variations 
happening on the individual layer due to the weight of the 
layers printed above it.  

For a better-quality print, the thickness variations in 
the bottom layers due to the weight of the layers printed 
above should be minimum so that the final printed 
element will satisfy the dimensional and geometrical 
accuracy.  



For this analysis, a video of the entire printing process 
is captured, and a single fixed crop window is selected 
for an individual layer of a printed element. The HOG 
textural variations are extracted at every instance a layer 
is printed above it. During this period, the target layer 
under study changes in dimension and textures. A single 
crop window consisting of layer L6 of Element A is 
considered, and images at different instances after the 
printing of every layer above it are shown in Figure 9. 
Similarly, crop windows were set for other layers like L7, 
and L8 of Element A and layers L21, L22, and L23 of 
Element B.  

Figure 9 - Image of layer L6 of Element A after 
the number of layers printed above it 

HOG textural values are extracted for each image for 
different threshold values, and the output is generated 
similar to that shown in Figure 6. To have a single output 
value, an entropy calculation is performed. The entropy 
values are obtained for the same layer at different 
instances after subsequent layers are printed above them. 
Entropy variations for the layers considered for analysis 
in Element A and Element B are plotted and shown in 
Figure 10 and Figure 11, respectively. 

Element A – The entropy variation indicates the 
textural variations happening within the printed layer at 
that instance. First, the case of only one printed layer 
above the target layer is taken. The single layer above 
will not impart much weight on the layer below and will 
not cause a major reduction in the layer thickness. Hence, 
the printed layer is of its original printing height, and 
minor texture variations within the layers are 
predominant in the image. But as the number of layers 
printed above increases, the bottom layer compresses and 
makes the layer boundary more prominent visually. This 
results in the image consisting of predominantly dark 
pixels and causes a reduction in textural variations. The 
same is brought out in Figure 10, showing the reduction 
of entropy values as the number of printed layers 
increases. Beyond the four layers printed above, the 
thickness variation of the layer is reduced as the concrete 
reaches sufficient early strength to support the weight of 
the layers printed above, which is reflected with almost a 
flat curve in Figure 10.   

Element B – In the case of Element B, it was difficult 

to study the temporal texture changes in the bottom layers 
as there were undulations and major voids. Hence, layers 
L21, L22, and L23 are considered where there are smaller 
voids. The layers’ HOG entropy values are plotted in 
Figure 11. Layer L23 is found to exhibit similar trends, 
as shown in Figure 10. But in the case of layers L21 and 
L22, due to the presence of minor voids, the entropy 
values are found to vary drastically.  

Figure 10 - Entropy value variations of HOG 
outputs for layers L6, L7, and L8 of Element A  

Figure 11 - Entropy HOG outputs for layers L21, 
L22, and L23 of Element B 

4 Analysis and Discussion 

4.1 Quality assessment of printed layers 
From the previous section, it is plausible that the 

normalized weighted texture calculation is a valid 
representative of the textural variations within printed 
layers. Higher values were found for layers with 



voids/defects, which can help classify the layers as bad 
quality.  

Since the HOG texture extractor was designed to 
quantify textural variations in horizontal, vertical, and 
inclined directions, gradient variations in all directions 
are considered. The usage of different threshold values 
helps in capturing both minor and major textural 
variations, making it an end-to-end quality assessment 
technique for 3D printed elements.  

This study analyzed two different elements printed at 
two different times and lighting conditions. The 
illumination changes and distance of the camera will 
have minimal effect on the results due to the following 
reasons: All the computations involve a relative 
comparison of output values obtained from the different 
layers of the same image. Further, a normalization 
technique is introduced, which allows for all the output 
values to be normalized in terms of the mean and 
standard deviation obtained over the entire image of the 
printed element. Due to this normalization procedure, the 
results are not very sensitive to the weighting scheme 
used for the weighted texture computation. 

But in the case of off-site 3D printing, where the 
printing process is undertaken in a closed environment, a 
single trial 3D printed element can be printed and 
analyzed with the proposed technique to obtain the mean 
and standard deviation values. And using them, the 
quality of newly 3D printed elements during their 
printing can be assessed. Care should be taken to keep the 
camera position and printing material mix design 
constant.  

Comparing the weighted texture values and the 
normalized weighted texture in Figure 7 and Figure 8, 
both graphs have a similar evolution of values (slope of 
the linear fit of values), matching the voids in the printed 
elements. Hence even the weighted texture values of the 
HOG feature extraction can be used as an effective 
quality assessment tool. But the normalized weighted 
texture measure is considered to significantly eliminate 
the impact of brightness/illumination changes, thereby 
making a robust controlled setup.  

Overall, the normalized weighted texture values 
obtained from the HOG texture extractor prove to be a 
better-quality assessment metric for concrete 3D printed 
elements. It can further be used as a quality assessment 
tool for already printed layers after the printing process 
is completed.  

4.2 A measure of workability and 
extrudability 

The observed results from the computer vision model 
can be used to quantify the workability of the 3D printing 
concrete. The change in workability of the mix used for 
printing Element A was studied and found to be reducing 
with time, as shown in Figure 12 [10]. A flow table test 

was conducted to quantify the workability change with 
time for the material matching the mix used for this study, 
LC2-MS-0.6SP (Limestone Calcined Clay mix with 
Manufacture Sand and Super Plasticizer).  

It is to be noted that the spread diameter from the flow 
table test keeps on reducing every half an hour, indicating 
a reduction in workability. 

Figure 12 - Evolution of workability of 3DP 
concrete with time-based on flow table test [10]  

Characterization of workability for every 5 to 10 
minutes is not considered in the scope of this study, but 
the graph indicates the reduction in workability with time. 
There is a reduction in workability with time, whereas 
there is an increase in the normalized weighted texture 
values from HOG. Hence an inverse correlation can be 
obtained, which helps in indirect non-intrusive 
quantification of workability. The workability can be 
directly related to the extrudability properties of the 3DP 
concrete. Hence the developed methodology can be used 
to indirectly quantify the extrudability and workability 
properties of concrete 3D printing. 

4.3 An Assessment of Buildability Properties 
In section 3.2, HOG entropy values are found to be 

high in the initial instance when only one layer is printed 
above it. But as the number of layers printed above 
increases, the bottom layer has sufficient time to gain 
early strength. This phenomenon was captured in this 
analysis; the HOG entropy values are found to stabilize 
and flatten after the printing of four layers above any 
target layer. But in the case of layers L21 and L22 of 
element B, the HOG textural variations are not found to 
stabilize even after the printing of four layers above it. It 
is due to the presence of minor voids in the layers. Hence, 
if the HOG textural variations are not found to stabilize 
within a few printed layers, then it indicates the presence 
of voids or the failure of buildability properties. A 
detailed study of buckling is outside the scope of this 
study. The developed methodology is intended to provide 
early indications of buildability issues. This study can be 
used to monitor and assess the buildability properties of 
3DP concrete during the printing process.  



5 Conclusion 
A quality control and assessment technique for 

concrete 3D printed elements based on computer vision 
has been developed in this study. Using continuous 
monitoring, several possible defects leading to wastage 
in terms of cost, materials, and time are avoided, 
reinforcing the sustainability aspects of concrete 3D 
printing technology. The variations in the surface texture 
of the concrete due to the reduction in workability or 
moisture content are analyzed using 2D images taken 
through a camera. The main contribution of this study is 
the introduction of a new algorithm for texture extraction 
based on the concept of Histogram of Oriented Gradients 
(HOG). This algorithm uses multiple threshold levels to 
capture minor and major textural variations. Also, the 
normalized weighted texture value of the distribution is 
found to be an appropriate metric to quantify the textural 
variations. This metric is found to have higher values for 
layers having voids. Also, the values increase as the 
granularity of the layers increases resulting in a reduction 
in workability. Further, a temporal changes study is also 
conducted for an individual layer to understand the 
variations within the layer due to the buildability 
properties. The significant conclusions obtained from 
this study are as follows, 

• A continuous, non-intrusive method to monitor the
temporal changes in the extrudability properties of
3D printing concrete has been achieved.

• The newly developed method is less sensitive to
variations in illuminance levels. The normalized
weighted texture minimizes the influence of
differential brightness/illumination changes.

• Results show that the defects and voids present in
the 3DP layers can be autonomously detected.

• An inverse correlation is observed between the
normalized weighted texture value and the
workability over time. This means that the
workability properties of concrete can be indirectly
quantified using texture data.

• Temporal textural variation study helps in indirectly
assessing the buildability properties. The changes in
layer thickness can be correlated to the changes in
the textural variations.

Results prove the feasibility of using computer 
vision-based texture extraction methods for quality 
monitoring of 3D printed elements. Further, the quality 
assessment obtained can be used as feedback to the 
printing system to control the printing parameters like 
extrusion and printing speed to achieve a better-quality 
print. Increasing the extrusion speed will help in making 
the concrete material shear and flow continuously 
without voids and discontinuities. As a result, a change 
in the normalized weighted texture value can be used as 

feedback to the printing system for taking corrective 
actions to avoid material wastage and achieve high-
quality output. The study opens many opportunities to 
extract useful information from non-intrusive based 
sensor data collected to help the sustainability aspects of 
3D printing technology.  
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